

Procurement Office PO Box 157 109 Benson Street Walterboro, SC 29488 Phone: (843) 782-0504

REQUEST FOR COMPETIVE SEALED BIDS FR-18 PIERCE ROAD FIRE/RESCUE SUBSTATION 34

BIDS DUE: Wednesday, July 16, 2014 at 11:00am

MAIL BID TO:

Colleton County Procurement Office Attn: Kaye B Syfrett PO Box 157 Walterboro, SC 29488 HAND DELIVER BID TO:

Procurement Office Attn: Kaye B Syfrett 109 Benson Street Walterboro, SC 29488

BID OPENING LOCATION:

Council Chambers 109 Benson Street, 2nd Floor Walterboro, SC 29488

Addendum #2

This addendum is dated July 14, 2014

Answers to Questions

- 1. See attached Soil Investigation. Contractor to provide access after award of bid for Building Pad Soil investigation. All cost for Soil Investigations have been paid in advance and is not required by Bidders.
- 2. Contractor shall include in bid cost for 4" Schedule 80 underground conduit for electrical service. Contractor shall coordinate with Local Power Company.
- 3. Contractor shall include in bid 1" underground schedule 40 PVC electrical conduit from building to well location.

WHITAKER LABORATORY, INC.

P.O. Box 7078 (912) 234-0696

Fax (912) 233-5061

2500 Tremont Road Savannah, Georgia 31418 Email: info@whitakerlab.net

July 7, 2014

Andrews & Burgess, Inc. Engineering and Surveying 2712 Bull Street, Suite A Beaufort, SC 29902

Attention: Ryan Lyle, P.E., Project Manager (843) 379-2222 ext. 226 ryan@andrewsburgess.com

Report of Near Surface Subgrade Soil Evaluation Services for Referencing: Colleton County Fire Station #34 – Peirce Road Colleton County, SC Report No.: 7-7-14-3

Dear Mr. Lyle:

As requested, WHITAKER LABORATORY, INC. has conducted an evaluation of the subgrade conditions on the above referenced site. Authorization to perform this investigation was provided by your acceptance of Phase I services outlined in our proposal dated June 10, 2014.

In an effort to evaluate near surface soil conditions, Whitaker Laboratory, Inc. performed 4 hand auger borings incorporating Dynamic Cone Penetration (DCP) testing. Three of the borings (A-1 through A-3) were advanced to depths reaching 5 feet each below the ground surface. The remaining boring (A-4) was advanced to a depth reaching 8 feet below the ground surface in an effort to obtain soil samples for soil mottling services in an effort to determine the seasonal high groundwater level. In addition, Whitaker performed hydraulic conductivity testing at boring location A-4 utilizing an Aardvark permeameter. Hydraulic conductivity testing was performed at a depth of 3 1/2 to 4 feet below the existing grade. Boring locations were generally performed at the locations depicted on the provided boring location plan.

Andrews & Burgess Inc. Colleton County Fire Station #34 July 7, 2014 Page 2 of 4

We understand that future development of this site will include a new fire station. This evaluation was performed in an effort to assist site design and provide site work recommendations for achieving finished subgrade elevations for building pads and pavement areas. This report shall not be utilized for foundation design of the building structure. Deep soil test borings and associated geotechnical engineering evaluation/report shall be performed for foundation design of the building structure.

Findings:

The site was heavily wooded at the time of our evaluation. Ground surface topography was generally flat.

Near Surface Soil Conditions:

- Organic topsoil (SP-PT) was encountered at the ground surface at each boring location and extended to depths approximating 6 inches below the ground surface.
- Below the topsoil, near surface soils on this site consist of firm to very firm sandy type soils (SP-SM) extending to depths reaching 2 ½ to 5 feet below the ground surface.
- Very firm sand clays (SC) were encountered below the near surface sands bracketing elevations 2 ½ to 6 ½ feet below the ground surface.
- Stiff clays (CL) were encountered below 6 ½ feet within boring A-4 and extended to the termination depth of A-4 at 8 feet below the ground surface.

Groundwater:

At the time of boring, groundwater was not encountered in any of the borings performed for this evaluation. Please note that the ground water elevation can be expected to fluctuate with the season of the year, surrounding ground surface conditions, and with recent rainfall amounts.

Soil Mottling:

Based upon soil mottling procedures performed at location A-4 (within the planned detention area of the site), the seasonal high groundwater was determined to approximate 4 feet below existing grades at this location.

Hydraulic Conductivity:

Based upon results of the Aardvark permeameter, a hydraulic loading rate of 3 minutes per inch was measured at location A-4. The hydraulic loading rate was determined at an approximate depth of 3 $\frac{1}{2}$ to 4 feet below existing grades. Whitaker recommends applying an appropriate factor of safety to this value prior to utilizing in site design.

Andrews & Burgess Inc. Colleton County Fire Station #34 July 7, 2014 Page 3 of 4

Recommendations:

Whitaker recommends site grades be determined by setting bottom of pavement section elevations residing no lower than 6 inches below existing ground surface elevations. Whitaker Laboratory, Inc. has to offer the following recommendations for preparing pavement areas and the building pad to finished subgrade elevations:

- Initial site preparation should include the stripping/removal of all organic materials including but not limited to grass mat, root mat, topsoil, and stumps. Stripping depths of 6+ inches should be anticipated.
- Exposed subgrade soil after stripping should be compacted in place to a minimum of 95% ASTM D-1557 and proofroll inspected prior to placement of fill.
- Due to near surface soil conditions on this site consisting of firm to very firm sands, exposed subgrade soil after stripping is anticipated to be readily compactable, firm and stable. Isolated areas may require remedial work to achieve a firm and stable condition.
- Backfill and/or fill material to establish finished subgrade elevations should consist of coarse-grained soil classified as SW, SP, or SP-SM with a maximum of 15% passing a #200 sieve. All backfill/fill required to achieve finished subgrade elevations should be placed and compacted in 6 to 8 inch loose lift thicknesses and each lift compacted to meet or exceed 95% of the soils modified proctor maximum dry density in accordance with ASTM-D-1557.

If the site is prepared in accordance with the above recommendations, standard and typical pavement sections (Asphalt Light Duty of 6 and 2, Asphalt Heavy Duty of 8 and 4, Concrete Light Duty of 6 inches and Concrete Heavy Duty of 9 inches) can be utilized.

As mentioned above, recommendations for foundation support of buildings shall be determined through the performance of deep soil test borings and geotechnical analysis/report.

We have attached a boring location plan and the boring logs to this report for your information.

Andrews & Burgess Inc. Colleton County Fire Station #34 July 7, 2014 Page 4 of 4

It is a pleasure to continue service to you and we look forward to further opportunities to assist you on this and other projects.

Respectfully submitted, WHITAKER LABORATORY, INC.

Jan Joh

Jason H. Follo, P.E. Project Engineer

Joseph F. Whitslen

Joseph F. Whitaker, P.E. Vice President

Attachments

Boring Location Plan

Boring Log

Aardvark Data Sheet

DCP Hand Auger Boring Record

Date: 26-Jun-14 Client: Andrews & Burgess Project: Colleton County Fire Station #34

Boring #	Depth	Material Description	DCP Results
A-1 Groundwater	0 to 6 inches 6 inches to 3 feet 3 to 5 feet at time of Boring = 5+ feet	Organic Topsoil (SM-PT) Fine Sand (SP-SM) Clayey Sand (SP-SC)	-1 = 8-12-17 -2 = 11-14-18 -3 = 23-25+ -4 = 25+ -5 = 25+
A-2 Groundwater	0 to 6 inches 6 inches to 5 feet at time of Boring = 5+ feet	Organic Topsoil (SM-PT) Fine Sand (SP-SM)	-1 = 7-11-18 -2 = 11-18-23 -3 = 21-25+ -4 = 25+ -5 = 25+
A-3 Groundwater	0 to 6 inches 6 inches to 2.5 feet 2.5 to 5 feet at time of Boring = 5+ feet	Organic Topsoil (SM-PT) Fine Sand (SP-SM) Sand Clay (SC)	-1 = 8-14-16 -2 = 12-16-21 -3 = 19-25+ -4 = 25+ -5 = 25+
A-4 Groundwater	0 to 6 inches 6 inches to 5 feet 5 to 6.5 feet 6.5 to 8 feet at time of Boring = 8+ feet	Organic Topsoil (SM-PT) Fine Sand (SP-SM and SP-SC) Sand Clay (SC) Clay (CL)	$\begin{array}{l} -1 = 8 - 13 - 16 \\ -2 = 10 - 18 - 22 \\ -3 = 10 - 11 - 18 \\ -4 = 12 - 17 - 22 \\ -5 = 19 - 25 + \\ -6 = 19 - 25 + \\ -7 = 25 + \\ -8 = 25 + \end{array}$

Percolation or Ksat Rates using Aardvark Soil Permeameter	in or Ksat	Rates u:	sing Aard	vark Soil	Permear	neter	Perc Rate:		min/in	lin	Ksat:	in/hr	LR:	gdsf
									Site: 0	Colleton County Fire Station #34	Fire Stati	on #34		
Date:	26-Jun-14	26-Jun-14 Operator:		Roy Pierce					Boring	Boring Number:		A-4	1	
Soil Series:				Soil Horizon:				_,	Boring	Boring Depth (in) :		42 - 48		
Diameter of Hole(in):	Hole(in):	4.25			Wate	r Column	Water Column Height (in):	9	÷	Head Conversion Factor (HCF)	n Factor (HCF):		1.00
Boring Conversion Factor (BCF):	version Fact	tor (BCF):			EPA Desi	gn Loadin	g Rate = Ksat*	14.96*(safety		0.5 syste	m depende	ent)	
Boring Conversion Factor (BCF) = 5.06 for Aardvark Reservoir/((radius)squared)	ersion Factor	- (BCF) = 5	.06 for Aard	vark Reserv	oir/((radius	()squared)		F Value	∋ (Rad(Value (Radcliffe and West, 2	2000)	Perc min/i	Perc min/in to Ksat in/hr	n/hr
	BCF of 4 in	auger is 4.	BCF of 4 in auger is 4.25 in diameter boring = 1	ter boring =	~						Borehole diameter	diameter		
	BCF of 3.25	i in auger is	BCF of 3.25 in auger is 3.5 in diameter boring = 1.65	meter boring	j = 1.65			Texture	~		3.5 in	4.0 in	4.5 in	in
	BCF of a 2.4	5 in auger i	BCF of a 2.5 in auger is 2.75 in diameter boring = 2.86	meter borin	g = 2.86									
Head Conversion Factor (HCF) = Water Column Ht inches / 6 inches,	rsion Factor	(HCF) = W	'ater Column	Ht inches /		or Htcm/15cm	5cm	Sands			0.107	0.124	0.141	<u>1</u>
Example is 3.5in boring with 7 in water column in boring, 0.5 in head	.5in boring w	vith 7 in wat	ter column ir	1 boring, 0.5		drop over 45 minutes	minutes	Structu	red loa	Structured loams and clays	0.082	0.096	0.11	F
in a structureded clay loam soil	eded clay loai	m soil		5				Unstruc	stured	Unstructured loams and clays	0.048	0.057	0.065	35
Time T0	Time x	Time	Hours	Reservoir	Reservoir	Reservoir	Percolation	BCF I	HCF	Percolation	F value	Ksat	Design Loading	oading
2400 hours	2400 hours	Elapsed	Elapsed	Reading	Reading	Change				Rate	from table	a = F(1/P)	Rate gdsf	gdsf
ti	t+1	(ti+1)-ti	dt/60min/hr	Ч	h+1	(h+1)-h	dt/dh			Adjusted			with a 0.10	0.10
		đ				dh				(P*HCF)/BCF			Safety Factor	-actor
	initial	next		initial	next		٩			Adj P			of Ksat	sat
		min	hr	ņ	, <u>c</u>	.E	min/in			min/in		in/hr	gdsf	J.
8:00	8:45	45	0.75	14.5	14	0.5	90	1.65	1.17	64	0.082	0.08	0.12	2
1:00	1:10	10	0.166667	16.7	12.7	4	2.5	t-	1.00	n	0.124	2.98	4.45	51 L
1:10	1:20	10	0.166667	12.7	8.7	4	2.5	-	1.00	m	0.124	2.98	4.45	2
1:20	1:30	10	0.166667	8.7	5.9	2.8	3.571428571	-	1.00	4	0.124	2.08	3.12	2
1:30	1:40	10	0.166667	5.9	2.7	3.2	3.125	-	1.00	e	0.124	2.38	3.56	9
1:40			0.166667	16.7	13.3	3.4	2.941176471	-	1.00	3	0.124	2.53	3.78	8
1:50	1	10	0.166667	13.3	10	3.3	3.03030303	-	1.00	3	0.124	2.46	3.67	7
2:00		10	0.166667	10	6.7	3.3	3.03030303	1	1.00	3	0.124	2.46	3.67	7
2:10		10	0.166667	6.7	3.4	3.3	3.03030303	1	1.00	3	0.124	2.46	3.67	7
2:20	2:30	10	0.166667	16.7	13.4	3.3	3.03030303	-	1.00	3	0.124	2.46	3.67	7
STEADY	STATE	ARITHMETIC		AVERAGE	E (last 4	I readings	gs)			3.03		2.46		3.67
Pedon Description	ription													
Depth	Horizon	Color	Texture	Structure	Horizon	Notes								
														T
User is resp	onsible for cc	onfirming al	Il Stand Opei	ration Proce	dures for th	heir area ai	User is responsible for confirming all Stand Operation Procedures for their area and type of study,							
Aardvark Sy	stems Interna	ational, LLC	C or third pai	ties do not a	assume an	y responsit	pility for misuse	of devic	ses or s	Aardvark Systems International, LLC or third parties do not assume any responsibility for misuse of devices or spreadsheets or calculations	calculation	S		
Site Notes:														
														E.